Abstract
First order reasoning about hyperintegers can prove things about sets of integers. In the author’s paper Nonstandard Arithmetic and Reverse Mathematics, Bulletin of Symbolic Logic 12 100–125, it was shown that each of the “big five” theories in reverse mathematics, including the base theory, has a natural nonstandard counterpart. But the counterpart of has a defect: it does not imply the Standard Part Principle that a set exists if and only if it is coded by a hyperinteger. In this paper we find another nonstandard counterpart, *RCA0′, that does imply the Standard Part Principle.