Abstract
We show that \, the basic theory of bounded arithmetic corresponding to the complexity class \, proves the \ axiom expressing the totality of iterated multiplication satisfying its recursive definition, by formalizing a suitable version of the \ iterated multiplication algorithm by Hesse, Allender, and Barrington. As a consequence, \ can also prove the integer division axiom, and the \-translation of induction and minimization for sharply bounded formulas. Similar consequences hold for the related theories \ and \. As a side result, we also prove that there is a well-behaved \ definition of modular powering in \\).