Abstract
Differential scanning calorimetry (DSC) has been employed to investigate the glass transition activation energy E g, thermal stability and glass-forming ability (GFA) of Se90In10− x Sb x (x = 0, 2, 4, 6, 8, 10) chalcogenide glasses. DSC runs were performed at six different heating rates. Well-defined endothermic and exothermic peaks were obtained at glass transition and crystallization temperature. The dependence of glass transition temperature T g on heating rate (α), as well as composition of Sb, has been studied. From the dependence of glass transition temperature on heating rate, the E g has been calculated on the basis of the Kissinger [Anal. Chem. 29 (1957) p.1702] and Moynihan [J. Phys. Chem. 78 (1974) p.267] models. Thermal stability has been monitored through the calculation of temperature differences T c–T g, the stability parameter S, and the enthalpy released during crystallization H c. The GFA has been investigated on the basis of the Hruby parameter H r, which is strong indicator of GFA. Results for GFA are in good agreement with fragility index F i calculations, indicating that Se90In6Sb4 is an excellent glass-former.