Abstract
Mathematical cognition is widely regarded as the epitome of the kind of cognition that systematically eludes enactivist treatment. It is the parade example of abstract, disembodied cognition if ever there was one. As it is such an important test case, this paper focuses squarely on what Gallagher has to say about mathematical cognition in Enactivist Interventions. Gallagher explores a number of possible theories that he holds could provide useful fodder for developing an adequate enactivist account of mathematical cognition. Yet if the analyses of this paper prove sound, then some of the central approaches he considers are simply not fit for such service. That said, in the final analysis, if crucial additions and subtractions are made, there is a real chance of fashioning a promising enactivist account of mathematical cognition.