Quasi-varieties: A special access

Studia Logica 78 (1-2):249 - 260 (2004)
  Copy   BIBTEX

Abstract

Quasi-equational logic concerns with a completeness theorem, i. e. a list of general syntactical rules such that, being given a set of graded quasi-equations Q, the closure Cl Q = Qeq Fun Q can be derived from by the given rules. Those rules do exist, because our consideration could be embedded into the logic of first order language. But, we look for special (quasi-equational) rules. Suitable rules were already established for the (non-functorial) case of partial algebras in Definition 3.1.2 of [27], p. 108, and [28], p. 102. (For the case of total algebras, see [35].) So, one has to translate these rules to the (functorial) language of partial theories .Surprisingly enough, partial theories can be replaced up to isomorphisms by partial Dale monoids (cf. Section 3), which, in the total case are ordinary monoids.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,894

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
49 (#502,979)

6 months
6 (#745,008)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references