La Mannigfaltigkeitslehre de Husserl

Philosophiques 36 (2):447-465 (2009)
  Copy   BIBTEX

Abstract

Pour projeter de la lumière dans de nombreux coins et recoins obscurs de la logique pure de Husserl et dans les rapports entre sa logique formelle et sa logique transcendantale, et combler des lacunes empêchant qu’on arrive à une appréciation juste de sa Mannigfaltigkeitslehre, ou théorie de multiplicités, on examine comment, en prônant une théorie des systèmes déductifs, ou systèmes d’axiomes, comme tâche suprême de la logique pure, Husserl cherchait à résoudre certains problèmes épineux auxquels il s’était heurté en écrivant Philosophie de l’arithmétique. Ces problèmes sont décrits. Ensuite, on rassemble les éléments nécessaires pour caractériser ce que Husserl, à travers les textes présentement disponibles, voulait dire des Mannigfaltigkeiten. Pour conclure, il est indiqué comment Husserl pouvait considérer que sa théorie représentait une solution aux problèmes qui avaient conduit à son élaboration.To shed light on the numerous dark areas surrounding Husserl’s ideas about pure logic and the relationship between his formal logic and his transcendental logic, and so provide an accurate characterisation of his Mannigfaltigkeitslehre, a close look is taken at how, by advocating a theory of deductive systems, or axiomatic systems as the highest task of pure logic, Husserl sought to resolve certain thorny problems he encountered when writing the Philosophy of Arithmetic. Those problems are described. Then, his ideas about axiomatization and manifolds are drawn together from the various sources now available to provide a more complete picture of his Mannigfaltigkeitslehre. In conclusion, it is shown how Husserl considered his theory to be a solution to the problems leading to its development

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 102,283

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-01

Downloads
195 (#128,489)

6 months
7 (#711,891)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

Infinity, Ideality, Transcendentality: The Idea in the Kantian Sense in Husserl and Derrida.Till Grohmann - 2024 - Journal of the British Society for Phenomenology 55 (3):221-236.
Edmund Husserl (1859-1938).Denis Fisette (ed.) - 2009 - Montreal: Philosophiques.

Add more citations

References found in this work

Principles of mathematics.Bertrand Russell - 1931 - New York,: W.W. Norton & Company.
The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
From Frege to Gödel.Jean Van Heijenoort (ed.) - 1967 - Cambridge,: Harvard University Press.
My philosophical development.Bertrand Russell - 1959 - London,: Allen & Unwin.

View all 23 references / Add more references