Abstract
We present dualities for implicative and residuated lattices. In combination with our recent article on a discrete duality for lattices with unary modal operators, the present article contributes in filling in a gap in the development of Orłowska and Rewitzky’s research program of discrete dualities, which seemed to have stumbled on the case of non-distributive lattices with operators. We discuss dualities via truth, which are essential in relating the non-distributive logic of two-sorted frames with their sorted, residuated modal logic, as well as full Stone duality for residuated lattices. Our results have immediate applications to the semantics of related substructural logical calculi.