Possible-worlds semantics for modal notions conceived as predicates

Journal of Philosophical Logic 32 (2):179-223 (2003)
  Copy   BIBTEX

Abstract

If □ is conceived as an operator, i.e., an expression that gives applied to a formula another formula, the expressive power of the language is severely restricted when compared to a language where □ is conceived as a predicate, i.e., an expression that yields a formula if it is applied to a term. This consideration favours the predicate approach. The predicate view, however, is threatened mainly by two problems: Some obvious predicate systems are inconsistent, and possible-worlds semantics for predicates of sentences has not been developed very far. By introducing possible-worlds semantics for the language of arithmetic plus the unary predicate □, we tackle both problems. Given a frame (W, R) consisting of a set W of worlds and a binary relation R on W, we investigate whether we can interpret □ at every world in such a way that □ $\ulcorner A \ulcorner$ holds at a world ᵆ ∊ W if and only if A holds at every world $\upsilon$ ∊ W such that ᵆR $\upsilon$ . The arithmetical vocabulary is interpreted by the standard model at every world. Several 'paradoxes' (like Montague's Theorem, Gödel's Second Incompleteness Theorem, McGee's Theorem on the ω-inconsistency of certain truth theories, etc.) show that many frames, e.g., reflexive frames, do not allow for such an interpretation. We present sufficient and necessary conditions for the existence of a suitable interpretation of □ at any world. Sound and complete semi-formal systems, corresponding to the modal systems K and K4, for the class of all possible-worlds models for predicates and all transitive possible-worlds models are presented. We apply our account also to nonstandard models of arithmetic and other languages than the language of arithmetic

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,314

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
207 (#128,330)

6 months
22 (#143,307)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Hannes Leitgeb
Ludwig Maximilians Universität, München
Volker Halbach
Oxford University

References found in this work

Outline of a theory of truth.Saul Kripke - 1975 - Journal of Philosophy 72 (19):690-716.
Quality and concept.George Bealer - 1982 - New York: Oxford University Press.

View all 50 references / Add more references