Abstract
Logical consequence in first-order predicate logic is defined substitutionally in set theory augmented with a primitive satisfaction predicate: an argument is defined to be logically valid if and only if there is no substitution instance with true premises and a false conclusion. Substitution instances are permitted to contain parameters. Variants of this definition of logical consequence are given: logical validity can be defined with or without identity as a logical constant, and quantifiers can be relativized in substitution instances or not. It is shown that the resulting notions of logical consequence are extensionally equivalent to versions of first-order provability and model-theoretic consequence. Every model-theoretic interpretation has a substitutional counterpart, but not vice versa. In particular, in contrast to the model-theoretic account, there is a trivial intended interpretation on the substitutional account, namely, the homophonic interpretation that does not substitute anything. Applications to free logic, and theories and languages other than set theory are sketched.