Abstract
I discuss the problem of whether true contradictions of the form “x is P and not P” might be the expression of an implicit relativization to distinct respects of application of one and the same predicate P. Priest rightly claims that one should not mistake true contradictions for an expression of lexical ambiguity. However, he primarily targets cases of homophony for which lexical meanings do not overlap. There exist more subtle forms of equivocation, such as the relation of privative opposition singled out by Zwicky and Sadock in their study of ambiguity. I argue that this relation, which is basically a relation of general to more specific, underlies the logical form of true contradictions. The generalization appears to be that all true contradictions really mean “x is P in some respects/to some extent, but not in all respects/not to all extent”. I relate this to the strict-tolerant account of vague predicates and outline a variant of the account to cover one-dimensional and multidimensional predicates.