Trustworthy medical AI systems need to know when they don’t know

Journal of Medical Ethics (forthcoming)
  Copy   BIBTEX

Abstract

There is much to learn from Durán and Jongsma’s paper.1 One particularly important insight concerns the relationship between epistemology and ethics in medical artificial intelligence. In clinical environments, the task of AI systems is to provide risk estimates or diagnostic decisions, which then need to be weighed by physicians. Hence, while the implementation of AI systems might give rise to ethical issues—for example, overtreatment, defensive medicine or paternalism2—the issue that lies at the heart is an epistemic problem: how can physicians know whether to trust decisions made by AI systems? In this manner, various studies examining the interaction of AI systems and physicians have shown that without being able to evaluate their trustworthiness, especially novice physicians become over-reliant on algorithmic support—and ultimately are led astray by incorrect decisions.3–5 This leads to a second insight from the paper, namely that even if some AI system happens to be opaque, it is still not built on the moon. To assess its trustworthiness, AI developers or physicians have different sorts of higher order evidence at hand. Most importantly, …

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,130

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2021-04-14

Downloads
104 (#203,363)

6 months
21 (#139,367)

Historical graph of downloads
How can I increase my downloads?