Abstract
For each natural number n we study the modal logic determined by the class of transitive Kripke frames in which there are no cycles of length greater than n and no strictly ascending chains. The case n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0$$\end{document} is the Gödel-Löb provability logic. Each logic is axiomatised by adding a single axiom to K4, and is shown to have the finite model property and be decidable. We then consider a number of extensions of these logics, including restricting to reflexive frames to obtain a corresponding sequence of extensions of S4. When n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, this gives the famous logic of Grzegorczyk, known as S4Grz, which is the strongest modal companion to intuitionistic propositional logic. A topological semantic analysis shows that the n-th member of the sequence of extensions of S4 is the logic of hereditarily n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}-irresolvable spaces when the modality ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document} is interpreted as the topological closure operation. We also study the definability of this class of spaces under the interpretation of ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document} as the derived set operation. The variety of modal algebras validating the n-th logic is shown to be generated by the powerset algebras of the finite frames with cycle length bounded by n. Moreover each algebra in the variety is a model of the universal theory of the finite ones, and so is embeddable into an ultraproduct of them.