Conditional Probability Is Not Countably Additive
Abstract
I argue for a connection between two debates in the philosophy of probability. On the one hand, there is disagreement about conditional probability. Is it to be defined in terms of unconditional probability, or should we instead take conditional probability as the primitive notion? On the other hand, there is disagreement about how additive probability is. Is it merely finitely additive, or is it additionally countably additive? My thesis is that, if conditional probability is primitive, then it is not countably additive.