We Can Be in Harmony With Classical Logic

Abstract

In this paper I present the strategy behind the proof-theoretic justification of logical inference. I then discuss how this strategy leads to the famous requirement that the inference rules for the logical constants should be in harmony. I argue that the proof-theoretic justification of the logical constants can be used to justify classical logic. To substantiate this I present a new normalisation theorem for first order classical logic involving Sheffer Stroke. The proof of this theorem can be modified to yield a normalisation result for classical logic with conjunction, negation and the universal quantifier

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,004

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-02-15

Downloads
43 (#575,876)

6 months
43 (#110,244)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references