Finite and infinite support in nominal algebra and logic: nominal completeness theorems for free

Journal of Symbolic Logic 77 (3):828-852 (2012)
  Copy   BIBTEX

Abstract

By operations on models we show how to relate completeness with respect to permissivenominal models to completeness with respect to nominal models with finite support. Models with finite support are a special case of permissive-nominal models, so the construction hinges on generating from an instance of the latter, some instance of the former in which sufficiently many inequalities are preserved between elements. We do this using an infinite generalisation of nominal atoms-abstraction. The results are of interest in their own right, but also, we factor the mathematics so as to maximise the chances that it could be used off-the-shelf for other nominal reasoning systems too. Models with infinite support can be easier to work with, so it is useful to have a semi-automatic theorem to transfer results from classes of infinitely-supported nominal models to the more restricted class of models with finite support. In conclusion, we consider different permissive-nominal syntaxes and nominal models and discuss how they relate to the results proved here

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,173

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2012-11-06

Downloads
37 (#607,693)

6 months
4 (#1,246,333)

Historical graph of downloads
How can I increase my downloads?