Extremely large cardinals in the rationals
Abstract
In 1995 we gave a new simple principle of combinatorial set theory and showed that it implies the existence of a nontrivial elementary embedding from a rank into itself, and follows from the existence of a nontrivial elementary embedding from V into M, where M contains the rank at the first fixed point above the critical point. We then gave a “diamondization” of this principle, and proved its relative consistency by means of a standard forcing argument.