Spontaneous localizations of the wave function and classical behavior

Foundations of Physics 20 (2):159-188 (1990)
  Copy   BIBTEX

Abstract

We investigate and develop further two models, the GRW model and the K model, in which the Schrödinger evolution of the wave function is spontaneously and repeatedly interrupted by random, approximate localizations, also called “self-reductions” below. In these models the center of mass of a macroscopic solid body is well localized even if one disregards the interactions with the environment. The motion of the body shows a small departure from the classical motion. We discuss the prospects and the difficulties of observing this anomaly. As far a the influence of the surroundings on submacroscopic objects (like dust particles) is concerned, we show that the estimates obtained recently in the theory of continuous measurements and in the K model are compatible. Also, we elaborate upon the relationship between the models. Firstly, borrowing a line of thought from the K model, we find the transition region between macroscopic and microscopic behaviors in the GRW model. Secondly, we refine the propagation rule of the wave function in the K model with the help of the time-evolution equation proposed in the GRW model

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,173

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-22

Downloads
46 (#479,837)

6 months
5 (#1,037,427)

Historical graph of downloads
How can I increase my downloads?