Abstract
In the proof-theoretic semantics approach to meaning, harmony , requiring a balance between introduction-rules (I-rules) and elimination rules (E-rules) within a meaning conferring natural-deduction proof-system, is a central notion. In this paper, we consider two notions of harmony that were proposed in the literature: 1. GE-harmony , requiring a certain form of the E-rules, given the form of the I-rules. 2. Local intrinsic harmony : imposes the existence of certain transformations of derivations, known as reduction and expansion . We propose a construction of the E-rules (in GE-form) from given I-rules, and prove that the constructed rules satisfy also local intrinsic harmony. The construction is based on a classification of I-rules, and constitute an implementation to Gentzen’s (and Pawitz’) remark, that E-rules can be “read off” I-rules.