An algebraic difference between isols and cosimple isols

Journal of Symbolic Logic 37 (3):557-561 (1972)
  Copy   BIBTEX

Abstract

There is a fairly simple algebraic property that distinguishes isols from cosimple isols

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,795

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On hyper‐torre isols.Joseph Barback - 2006 - Mathematical Logic Quarterly 52 (4):359-361.
The Co-simple isols.Louise Hay - 1972 - Journal of Symbolic Logic 37 (2):407-408.
Isols and the pigeonhole principle.J. C. E. Dekker & E. Ellentuck - 1989 - Journal of Symbolic Logic 54 (3):833-846.
An Infinite Product of Isols.J. C. E. Dekker - 1966 - Journal of Symbolic Logic 31 (4):652-652.
CO‐Simple Higher‐Order Indecomposable Isols.Jeffrey Remmel & Alfred Manaster - 1980 - Mathematical Logic Quarterly 26 (14-18):279-288.
Infinite Products of Isols.Erik Ellentuck - 1966 - Journal of Symbolic Logic 31 (4):652-653.
On hyper-torre isols.Rod Downey - 1989 - Journal of Symbolic Logic 54 (4):1160-1166.

Analytics

Added to PP
2009-01-28

Downloads
35 (#653,582)

6 months
9 (#511,775)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Set Theory and the Continuum Hypothesis.Kenneth Kunen - 1966 - Journal of Symbolic Logic 35 (4):591-592.
Degrees of isolic theories.Erik Ellentuck - 1973 - Notre Dame Journal of Formal Logic 14 (3):331-340.

Add more references