The relativized Lascar groups, type-amalgamation, and algebraicity

Journal of Symbolic Logic 86 (2):531-557 (2021)
  Copy   BIBTEX

Abstract

In this paper we study the relativized Lascar Galois group of a strong type. The group is a quasi-compact connected topological group, and if in addition the underlying theory T is G-compact, then the group is compact. We apply compact group theory to obtain model theoretic results in this note. For example, we use the divisibility of the Lascar group of a strong type to show that, in a simple theory, such types have a certain model theoretic property that we call divisible amalgamation. The main result of this paper is that if c is a finite tuple algebraic over a tuple a, the Lascar group of stp(ac) is abelian, and the underlying theory is G-compact, then the Lascar groups of stp(ac) and of stp(a) are isomorphic. To show this, we prove a purely compact group-theoretic result that any compact connected abelian group is isomorphic to its quotient by every finite subgroup. Several (counter)examples arising in connection with the theoretical development of this note are presented as well. For example, we show that, in the main result above, neither the assumption that the Lascar group of stp(ac) is abelian, nor the assumption of c being finite can be removed.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,597

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-05-07

Downloads
16 (#1,196,523)

6 months
4 (#1,258,347)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

Add more citations

References found in this work

Galois groups of first order theories.E. Casanovas, D. Lascar, A. Pillay & M. Ziegler - 2001 - Journal of Mathematical Logic 1 (02):305-319.

Add more references