Abstract
Pekka Lahti is a prominent exponent of the renaissance of foundational studies in quantum mechanics that has taken place during the last few decades. Among other things, he and coworkers have drawn renewed attention to, and have analyzed with fresh mathematical rigor, the threat of inconsistency at the basis of quantum theory: ordinary measurement interactions, described within the mathematical formalism by Schrödinger-type equations of motion, seem to be unable to lead to the occurrence of definite measurement outcomes, whereas the same formalism is interpreted in terms of probabilities of precisely such definite outcomes. Of course, it is essential here to be explicit about how definite measurement results (or definite properties in general) should be represented in the formalism. To this end Lahti et al. have introduced their objectification requirement that says that a system can be taken to possess a definite property if it is certain (in the sense of probability 1) that this property will be found upon measurement. As they have gone on to demonstrate, this requirement entails that in general definite outcomes cannot arise in unitary measuring processes.In this paper we investigate whether it is possible to escape from this deadlock. As we shall argue, there is a way out in which the objectification requirement is fully maintained. The key idea is to adapt the notion of objectivity itself, by introducing relational or perspectival properties. It seems that such a “relational perspective” offers prospects of overcoming some of the long-standing problems in the interpretation of quantum mechanics