Abstract
According to ontological nihilism
there are, fundamentally, no individuals. Both natural languages and standard predicate logic, however, appear to be committed to a picture of the world as containing individual objects. This leads to what I call the \emph{expressibility challenge} for ontological nihilism: what language can the ontological nihilist use to express her account of how matters fundamentally stand? One promising suggestion is for the nihilist to use a form of \emph{predicate functorese}, a language developed by Quine. This proposal faces a difficult objection, according to which any theory in predicate functorese will be a notational variant of the corresponding theory stated in standard predicate logic. Jason Turner (2011) has provided the most detailed and convincing version of this objection. In the present paper, I argue that Turner's case for the notational variance thesis relies on a faulty metasemantic principle and, consequently, that an objection long thought devastating is in fact misguided.