Abstract
I focus on three preoccupations of recent writings on proof.
I. The role and possible effects of empirical reasoning in mathematics. Do recent developments (specifically, the computer-assisted proof of the 4CT) point to something essentially new as regards the need for and/or effects of using broadly empirical and inductive reasoning in mathematics? In particular, should we see such things as the computer-assisted proof of the 4CT as pointing to the existence of mathematical truths of
which we cannot have a priori knowledge?
2. The role of formalization in proof. What are the patterns ofinference according to which mathematical reasoning naturally proceeds? Are they of 'local' character (i.e. sensitive to the subject-matter of the reasoning concerned) or 'global' character (i.e. invariant across all subject-matters)? Finally, what if any relationship is there (a) between the patterns of inference manifest in a proof and its explanatory capacity and (b) between explanatory capacity and rigor?
3. Diagrams and their role in mathematical reasoning. What essentially is diagrammatic reasoning, and what is the nature and basis of its usefulness? Can it play a justificative role in the development of mathematical knowledge and, more particularly, in genuine proof? Finally, does the use of diagrammatic reasoning force an adjustment either in our
conception of rigor or in our view of its importance?