There Can Be a Permutation Which Is Not The Product of Two Reflections

Mathematical Logic Quarterly 34 (1):65-66 (1988)
  Copy   BIBTEX

Abstract

This article has no associated abstract. (fix it)

Other Versions

reprint Degen, J. W. (1988) "There Can Be a Permutation Which Is Not The Product of Two Reflections". Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 34(1):65-66

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,795

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Permutation Models in the Sense of Rieger‐Bernays.T. E. Forster - 1987 - Mathematical Logic Quarterly 33 (3):201-210.
Products of compact spaces in the least permutation model.Norbert Brunner - 1985 - Mathematical Logic Quarterly 31 (25‐28):441-448.
Logische Abhandlungen.Stamatios Gerogiorgakis - 2010 - History and Philosophy of Logic 31 (3):291-293.
Finite Homogeneous 3‐Graphs.Alistair H. Lachlan & Allyson Tripp - 1995 - Mathematical Logic Quarterly 41 (3):287-306.
How to construct a product of a‐frames.Douglas S. Bridges - 2012 - Mathematical Logic Quarterly 58 (4-5):281-293.
Antisymmetry and Lexicographic Product Relations.Hartmut Höft - 1981 - Mathematical Logic Quarterly 27 (22):337-344.
A Löwenheim‐Skolem Theorem for Inner Product Spaces.Wilfried Meissner - 1982 - Mathematical Logic Quarterly 28 (33‐38):549-556.

Analytics

Added to PP
2013-12-01

Downloads
20 (#1,050,317)

6 months
2 (#1,694,052)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Some Aspects and Examples of Infinity Notions.J. W. Degen - 1994 - Mathematical Logic Quarterly 40 (1):111-124.
Factors of Functions, AC and Recursive Analogues.Wolfgang Degen - 2002 - Mathematical Logic Quarterly 48 (1):73-86.

Add more citations

References found in this work

The Axiom of Choice.Thomas J. Jech - 1973 - Amsterdam, Netherlands: North-Holland.

Add more references