Deciding the existence of uniform interpolants over transitive models

Archive for Mathematical Logic 50 (1-2):185-196 (2011)
  Copy   BIBTEX

Abstract

We consider the problem of the existence of uniform interpolants in the modal logic K4. We first prove that all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square}$$\end{document}-free formulas have uniform interpolants in this logic. In the general case, we shall prove that given a modal formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} and a sublanguage L of the language of the formula, we can decide whether \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} has a uniform interpolant with respect to L in K4. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square}$$\end{document}-free case is proved using a reduction to the Gödel Löb Logic GL, while in the general case we prove that the question of whether a modal formula has uniform interpolants over transitive frames can be reduced to a decidable expressivity problem on the μ-calculus.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Square principles with tail-end agreement.William Chen & Itay Neeman - 2015 - Archive for Mathematical Logic 54 (3-4):439-452.

Analytics

Added to PP
2013-10-27

Downloads
27 (#825,296)

6 months
8 (#583,676)

Historical graph of downloads
How can I increase my downloads?