Abstract
It has been argued that the attempt to meet indispensability arguments for realism in mathematics, by appeal to counterfactual statements, presupposes a view of mathematical modality according to which even though mathematical entities do not exist, they might have existed. But I have sought to defend this controversial view of mathematical modality from various objections derived from the fact that the existence or nonexistence of mathematical objects makes no difference to the arrangement of concrete objects. This defense of the controversial view of mathematical modality obviously falls far short of a full endorsement of the counterfactual approach, but I hope my remarks may serve to help keep such an approach a live option.