Abstract
Semantical arguments, based on the completeness theorem for first-order logic, give elegant proofs of purely syntactical results. For instance, for proving a conservativity theorem between two theories, one shows instead that any model of one theory can be extended to a model of the other theory. This method of proof, because of its use of the completeness theorem, is a priori not valid constructively. We show here how to give similar arguments, valid constructively, by using Boolean models. These models are a slight variation of ordinary first-order models, where truth values are now regular ideals of a given Boolean algebra. Two examples are presented: a simple conservativity result and Herbrand's theorem