Abstract
We prove that if T is a complete theory with weak elimination of imaginaries, then there is an explicit bijection between strict independence relations for T and strict independence relations for Teq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
Teq\end{document}. We use this observation to show that if T is the theory of the Fraïssé limit of finite metric spaces with integer distances, then Teq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
Teq\end{document} has more than one strict independence relation. This answers a question of Adler :1–20, 2009, Question 1.7).