Implicational (semilinear) logics I: a new hierarchy [Book Review]

Archive for Mathematical Logic 49 (4):417-446 (2010)
  Copy   BIBTEX

Abstract

In abstract algebraic logic, the general study of propositional non-classical logics has been traditionally based on the abstraction of the Lindenbaum-Tarski process. In this process one considers the Leibniz relation of indiscernible formulae. Such approach has resulted in a classification of logics partly based on generalizations of equivalence connectives: the Leibniz hierarchy. This paper performs an analogous abstract study of non-classical logics based on the kind of generalized implication connectives they possess. It yields a new classification of logics expanding Leibniz hierarchy: the hierarchy of implicational logics. In this framework the notion of implicational semilinear logic can be naturally introduced as a property of the implication, namely a logic L is an implicational semilinear logic iff it has an implication such that L is complete w.r.t. the matrices where the implication induces a linear order, a property which is typically satisfied by well-known systems of fuzzy logic. The hierarchy of implicational logics is then restricted to the semilinear case obtaining a classification of implicational semilinear logics that encompasses almost all the known examples of fuzzy logics and suggests new directions for research in the field

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,225

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-23

Downloads
58 (#369,129)

6 months
9 (#482,469)

Historical graph of downloads
How can I increase my downloads?

Author's Profile