Abstract
Building on recent work by Yale Weiss, we study conditional logics in the intuitionistic setting. We consider a number of semantic conditions which give rise, among others, to intuitionistic counterparts of Lewis’s logic VC and Stalnaker’s C2. We show how to obtain a sound and complete axiomatization of each logic arising from a combination of these conditions. On the way, we remark how, in the intuitionistic setting, certain classically equivalent principles of conditional logic come apart, and how certain logical connections between different principles no longer hold.