On the Cantor-bendixon rank of recursively enumerable sets

Journal of Symbolic Logic 58 (2):629-640 (1993)
  Copy   BIBTEX

Abstract

The main result of this paper is to show that for every recursive ordinal α ≠ 0 and for every nonrecursive r.e. degree d there is a r.e. set of rank α and degree d

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,880

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the ranked points of a Π1 0 set.Douglas Cenzer & Rick L. Smith - 1989 - Journal of Symbolic Logic 54 (3):975-991.
Countable thin Π01 classes.Douglas Cenzer, Rodney Downey, Carl Jockusch & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 59 (2):79-139.
On the r.e. predecessors of d.r.e. degrees.Shamil Ishmukhametov - 1999 - Archive for Mathematical Logic 38 (6):373-386.
Rank and randomness.Rupert Hölzl & Christopher P. Porter - 2019 - Journal of Symbolic Logic 84 (4):1527-1543.
Recursively enumerable generic sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.
Array nonrecursiveness and relative recursive enumerability.Mingzhong Cai - 2012 - Journal of Symbolic Logic 77 (1):21-32.
Kleene index sets and functional m-degrees.Jeanleah Mohrherr - 1983 - Journal of Symbolic Logic 48 (3):829-840.

Analytics

Added to PP
2009-01-28

Downloads
61 (#354,025)

6 months
17 (#183,832)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

A Rank One Cohesive Set. Downey & Yang Yue - 1994 - Annals of Pure and Applied Logic 68 (2):161-171.

Add more citations

References found in this work

Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
Countable thin Π01 classes.Douglas Cenzer, Rodney Downey, Carl Jockusch & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 59 (2):79-139.
On $\Pi^0_1$ classes and their ranked points.Rod Downey - 1991 - Notre Dame Journal of Formal Logic 32 (4):499-512.

Add more references