Abstract
A result of Soare and Stob asserts that for any non-recursive r.e. setC, there exists a r.e.[C] setA such thatA⊕C is not of r.e. degree. A setY is called [of]m-REA (m-REA[C] [degree] iff it is [Turing equivalent to] the result of applyingm-many iterated ‘hops’ to the empty set (toC), where a hop is any function of the formX→X ⊕W e X . The cited result is the special casem=0,n=1 of our Theorem. Form=0,1, and any (m+1)-REA setC, ifC is not ofm-REA degree, then for alln there exists an-r.e.[C] setA such thatA ⊕C is not of (m+n)-REA degree. We conjecture that this holds also form≥2