Optimal-wiring models of neuroanatomy
Abstract
Combinatorial network optimization appears to fit well as a model of brain structure: connections in the brain are a critically constrained resource, hence their deployment in a wide range of cases is finely optimized to “‘save wire". This review focuses on minimization of large-scale costs, such as total volume for mammal dendrite and axon arbors and total wirelength for positioning of connected neural components such as roundworm ganglia (and also mammal cortex areas). Phenomena of good optimization raise questions about mechanisms for their achievement: the examples of optimized neuroanatomy here turn out to include candidates for some of the most complex biological structures known to be derivable purely from simple physical energy minimization processes. Part of the functional role of such fine-tuned wiring optimization may be as a compact strategy for generating self-organizing complex neuroanatomical..