Exploiting Spatial and Temporal for Point of Interest Recommendation

Complexity 2018:1-16 (2018)
  Copy   BIBTEX

Abstract

An increasing number of users have been attracted by location-based social networks in recent years. Meanwhile, user-generated content in online LBSNs like spatial, temporal, and social information provides an ever-increasing chance to study the human behavior movement from their spatiotemporal mobility patterns and spawns a large number of location-based applications. For instance, one of such applications is to produce personalized point of interest recommendations that users are interested in. Different from traditional recommendation methods, the recommendations in LBSNs come with two vital dimensions, namely, geographical and temporal. However, previously proposed methods do not adequately explore geographical influence and temporal influence. Therefore, fusing geographical and temporal influences for better recommendation accuracy in LBSNs remains potential. In this work, our aim is to generate a top recommendation list of POIs for a target user. Specially, we explore how to produce the POI recommendation by leveraging spatiotemporal information. In order to exploit both geographical and temporal influences, we first design a probabilistic method to initially detect users’ spatial orientation by analyzing visibility weights of POIs which are visited by them. Second, we perform collaborative filtering by detecting users’ temporal preferences. At last, for making the POI recommendation, we combine the aforementioned two approaches, that is, integrating the spatial and temporal influences, to construct a unified framework. Our experimental results on two real-world datasets indicate that our proposed method outperforms the current state-of-the-art POI recommendation approaches.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,486

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Research on Context-Awareness Mobile SNS Recommendation Algorithm.Zhijun Zhang & Hong Liu - 2015 - Pattern Recognition and Artificial Intelligence 28.
Movie Recommendation System using Machine Learning Techniques.G. H. Ram Ganesh - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-20.

Analytics

Added to PP
2018-08-30

Downloads
51 (#454,370)

6 months
3 (#1,096,948)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

No references found.

Add more references