Emotion Analysis Based on Deep Learning With Application to Research on Development of Western Culture

Frontiers in Psychology 13 (2022)
  Copy   BIBTEX

Abstract

Cultural development is often reflected in the emotional expression of various cultural carriers, such as literary works, movies, etc. Therefore, the cultural development can be analyzed through emotion analysis of the text, so as to sort out its context and obtain its development dynamics. This paper proposes a text emotion analysis method based on deep learning. The traditional neural network model mainly deals with the classification task of short texts in the form of word vectors, which causes the model to rely too much on the accuracy of word segmentation. In addition, the short texts have the characteristics of short corpus and divergent features. A text emotion classification model combing the Bidirectional Encoder Representations from Transformers and Bi-directional Long Short-Term Memory is developed in this work. First, the BERT model is used to convert the trained text into a word-based vector representation. Then, the generated word vector is employed as the input of the BiLSTM to obtain the semantic representation of the context of the relevant word. By adding random dropout, the mechanism prevents the model from overfitting. Finally, the extracted feature vector is input to the fully connected layer, and the emotion category to which the text belongs is calculated through the Softmax function. Experiments show that in processing short texts, the proposed model based on BERT-BiLSTM is more accurate and reliable than the traditional neural network model using word vectors. The proposed method has a better analysis effect on the development of western culture.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2022-09-14

Downloads
12 (#1,357,717)

6 months
4 (#1,232,709)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations