Abstract
In this paper I examine Avicenna’s conception of the consequence relation. I will consider in particular his categorical and hypothetical logics. I will first analyse his definition of the implication and will show that this relation is not a consequence relation in his frame. Unlike the medieval logicians, he does not distinguish explicitly between material and formal consequences. The arguments discussed in al-Qiyās, where the conclusion is true only in some matters, and would seem close to a material consequence for that reason, are rejected explicitly as not syllogistic. He also rejects the ‘enthymemes’ unless they are complemented by their missing premise and the superfluous premises which, according to him, should promptly be ruled out. It seems then that the consequence relation in his theory is formal. It can be characterized as being ‘productivity in all matters’ or ‘necessary truth preserving’. It is illustrated by some single premise arguments, and above all by all kinds of syllogisms which, in his theory, are more numerous and various than in Aristotle’s one. The syllogism may contain two or more premises, including disjunctive ones. When it is hypothetical, it may lead to several conclusions. The premises may be in conflict, but then, the conclusion is false. He thus rejects the principle according to which ‘anything follows from a contradiction’. But, unlike what some scholars say, he does not admit any connexive principle. In the compound syllogisms, the conclusion follows by steps, each step taking two premises at once.