Abstract
We introduce a model with a set of experiments of which the probabilities of the outcomes coincide with the quantum probabilities for the spin measurements of a quantum spin- $ \frac{1}{2} $ particle. Product tests are defined which allow simultaneous measurements of incompatible observables, which leads to a discussion of the validity of the meet of two propositions as the algebraic model for conjunction in quantum logic. Although the entity possesses the same structure for the logic of its experimental propositions as a genuine spin- $ \frac{1}{2} $ quantum entity, the probability measure corresponding with the meet of propositions using the Hilbert space representation and quantum rules does not render the probability of the conjunction of the two propositions. Accordingly, some fundamental concepts of quantum logic, Piron-products, “classical” systems and the general problem of hidden variable theories for quantum theory are discussed