Abstract
In the middle part of his Brouillon Project on conics, Girard Desargues develops the theory of the traversale, a notion that generalizes the Apollonian diameter and allows to give a unified treatment of the three kinds of conics. We showed elsewhere that it leads Desargues to a complete theory of projective polarity for conics. The present article, which shall close our study of the Brouillon Project, is devoted to the last part of the text, in which Desargues puts his theory of the traversal into practice by giving a very elegant tratment of the classical theory of parameters and foci. This will lead us to show that Desargues’ proofs can only be understood if one accepts that he reasons in a resolutely projective framework, completely assimilating elements at infinity to those at finite distance in his proofs.