On Fingerprinting of Public Malware Analysis Services

Logic Journal of the IGPL 28 (4):473-486 (2020)
  Copy   BIBTEX

Abstract

Automatic public malware analysis services provide controlled, isolated and virtual environments to analyse malicious software samples. Unfortunately, malware is currently incorporating techniques to recognize execution onto a virtual or sandbox environment; when an analysis environment is detected, malware behaves as a benign application or even shows no activity. In this work, we present an empirical study and characterization of automatic PMAS, considering 26 different services. We also show a set of features that allow to easily fingerprint these services as analysis environments; the lower the unlikeability of these features, the easier for us to fingerprint the analysis service they belong to. Finally, we propose a method for these analysis services to counter or at least mitigate our proposal.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,290

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Intelligent Malware Detection Empowered by Deep Learning for Cybersecurity Enhancement.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):625-635.
Empowering Cybersecurity with Intelligent Malware Detection Using Deep Learning Techniques.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-665.
Revolutionizing Cybersecurity: Intelligent Malware Detection Through Deep Neural Networks.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-666.
A Novel Deep Learning-Based Framework for Intelligent Malware Detection in Cybersecurity.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):666-669.
Advanced Deep Learning Models for Proactive Malware Detection in Cybersecurity Systems.A. Manoj Prabharan - 2023 - Journal of Science Technology and Research (JSTAR) 5 (1):666-676.

Analytics

Added to PP
2019-12-07

Downloads
47 (#462,611)

6 months
9 (#454,186)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

No references found.

Add more references