Abstract
Since Lewis’s (1969) and Aumann’s (1976) pioneering contributions, the concepts of common knowledge and common belief have been discussed extensively in the literature, both syntactically and semantically1. At the individual level the difference between knowledge and belief is usually identified with the presence or absence of the Truth Axiom ( iA → A), which is interpreted as ”if individual i believes that A, then A is true”. In such a case the individual is often said to know that A (thus it is possible for an individual to believe a false proposition but she cannot know a false proposition). Going to the interpersonal level, the literature then distinguishes between common knowledge and common belief on the basis of whether or not the Truth Axiom is postulated at the individual level. However, while at the individual level the Truth Axiom captures merely a relationship between the individuals’ beliefs and the external world, at the interpersonal level it has very strong implications. For example, the following is a consequence of the Truth Axiom: i jA → iA, that is, if individual i believes that individual j believes that A, then individual i herself believes that A. Thus, in contrast to other axioms, the Truth Axiom does not merely reflect individual agents’ “logic of belief”. (The reason why the Truth Axiom is much stronger in an interpersonal context than appears at first glance is that it amounts to assuming that agreement of any individual’s belief with the truth is common knowledge). Given its logical force, it is not surprising to find that it has strong implications for the logic of common knowledge. In particular, if each individual’s beliefs satisfy the strongest logic of knowledge (namely S5 or KT5), the associated common knowledge operator satisfies this logic too. Such is not the case for belief: bereft of the Truth Axiom, even the strongest logic for individual belief (KD45) is insufficient to ensure the satisfaction of the “Negative Introspection” axiom for common belief: ¬ ∗A → ∗¬ ∗A (where ∗ denotes the common belief operator)..