Homogeneity in relatively free groups

Archive for Mathematical Logic 51 (7-8):781-787 (2012)
  Copy   BIBTEX

Abstract

We prove that any torsion-free, residually finite relatively free group of infinite rank is not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} -homogeneous. This generalizes Sklinos’ result that a free group of infinite rank is not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} -homogeneous, and, in particular, gives a new simple proof of that result.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,795

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.

Analytics

Added to PP
2013-10-27

Downloads
76 (#277,792)

6 months
7 (#736,605)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

On the generic type of the free group.Rizos Sklinos - 2011 - Journal of Symbolic Logic 76 (1):227 - 234.

Add more references