Abstract
Many argued (Accardi and Fedullo, Pitowsky) that Kolmogorov's axioms of classical probability theory are incompatible with quantum probabilities, and that this is the reason for the violation of Bell's inequalities. Szabó showed that, in fact, these inequalities are not violated by the experimentally observed frequencies if we consider the real, “effective” frequencies. We prove in this work a theorem which generalizes this results: “effective” frequencies associated to quantum events always admit a Kolmogorovian representation, when these events are collected through different experimental setups, the choice of which obeys a classical distribution.