Diverse classes

Journal of Symbolic Logic 54 (3):875-893 (1989)
  Copy   BIBTEX

Abstract

Let $\mathbf{I}(\mu,K)$ denote the number of nonisomorphic models of power $\mu$ and $\mathbf{IE}(\mu,K)$ the number of nonmutually embeddable models. We define in this paper the notion of a diverse class and use it to prove a number of results. The major result is Theorem B: For any diverse class $K$ and $\mu$ greater than the cardinality of the language of $K$, $\mathbf{IE}(\mu,K) \geq \min(2^\mu,\beth_2).$ From it we deduce both an old result of Shelah, Theorem C: If $T$ is countable and $\lambda_0 > \aleph_0$ then for every $\mu > \aleph_0,\mathbf{IE}(\mu,T) \geq \min(2^\mu,\beth_2)$, and an extension of that result to uncountable languages, Theorem D: If $|T| < 2^\omega,\lambda_0 > |T|$, and $|D(T)| = |T|$ then for $\mu > |T|$, $\mathbf{IE}(\mu,T) \geq \min(2^\mu,\beth_2).$

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The number of pairwise non-elementarily-embeddable models.Saharon Shelah - 1989 - Journal of Symbolic Logic 54 (4):1431-1455.
Getting more colors I.Todd Eisworth - 2013 - Journal of Symbolic Logic 78 (1):1-16.
Wild edge colourings of graphs.Mirna Džamonja, Péter Komjáth & Charles Morgan - 2004 - Journal of Symbolic Logic 69 (1):255 - 264.
The spectrum of resplendency.John T. Baldwin - 1990 - Journal of Symbolic Logic 55 (2):626-636.
Getting more colors II.Todd Eisworth - 2013 - Journal of Symbolic Logic 78 (1):17-38.
Strong tree properties for small cardinals.Laura Fontanella - 2013 - Journal of Symbolic Logic 78 (1):317-333.

Analytics

Added to PP
2009-01-28

Downloads
65 (#325,674)

6 months
25 (#126,272)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

The stability spectrum for classes of atomic models.John T. Baldwin & Saharon Shelah - 2012 - Journal of Mathematical Logic 12 (1):1250001-.
The Vaught Conjecture: Do Uncountable Models Count?John T. Baldwin - 2007 - Notre Dame Journal of Formal Logic 48 (1):79-92.

Add more citations

References found in this work

Classification Theory and the Number of Nonisomorphic Models.S. Shelah - 1982 - Journal of Symbolic Logic 47 (3):694-696.

Add more references