Abstract
Elekes proved that any infinite-fold cover of a σ-finite measure space by a sequence of measurable sets has a subsequence with the same property such that the set of indices of this subsequence has density zero. Applying this theorem he gave a new proof for the random-indestructibility of the density zero ideal. He asked about other variants of this theorem concerning I-almost everywhere infinite-fold covers of Polish spaces where I is a σ-ideal on the space and the set of indices of the required subsequence should be in a fixed ideal ${{\mathcal{J}}}$ on ω. We introduce the notion of the ${{\mathcal{J}}}$ -covering property of a pair ${({\mathcal{A}}, I)}$ where ${{\mathcal{A}}}$ is a σ-algebra on a set X and ${{I \subseteq \mathcal{P}(X)}}$ is an ideal. We present some counterexamples, discuss the category case and the Fubini product of the null ideal ${\mathcal{N}}$ and the meager ideal ${\mathcal{M}}$ . We investigate connections between this property and forcing-indestructibility of ideals. We show that the family of all Borel ideals ${{\mathcal{J}}}$ on ω such that ${\mathcal{M}}$ has the ${{\mathcal{J}}}$ -covering property consists exactly of non weak Q-ideals. We also study the existence of smallest elements, with respect to Katětov–Blass order, in the family of those ideals ${\mathcal{J}}$ on ω such that ${\mathcal{N}}$ or ${\mathcal{M}}$ has the ${\mathcal{J}}$ -covering property. Furthermore, we prove a general result about the cases when the covering property “strongly” fails