Type Inference in Mathematics

Abstract

In the theory of programming languages, type inference is the process of inferring the type of an expression automatically, often making use of information from the context in which the expression appears. Such mechanisms turn out to be extremely useful in the practice of interactive theorem proving, whereby users interact with a computational proof assistant to constructformal axiomatic derivations of mathematical theorems. This article explains some of the mechanisms for type inference used by the "Mathematical Components" project, which is working towards a verification of the Feit-Thompson theorem

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,597

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2016-01-12

Downloads
12 (#1,374,231)

6 months
2 (#1,689,094)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jeremy Avigad
Carnegie Mellon University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references