Abstract
This paper introduces the logic _Q__L__E__T_ _F_, a quantified extension of the logic of evidence and truth _L__E__T_ _F_, together with a corresponding sound and complete first-order non-deterministic valuation semantics. _L__E__T_ _F_ is a paraconsistent and paracomplete sentential logic that extends the logic of first-degree entailment (_FDE_) with a classicality operator ∘ and a non-classicality operator ∙, dual to each other: while ∘_A_ entails that _A_ behaves classically, ∙_A_ follows from _A_’s violating some classically valid inferences. The semantics of _Q__L__E__T_ _F_ combines structures that interpret negated predicates in terms of anti-extensions with first-order non-deterministic valuations, and completeness is obtained through a generalization of Henkin’s method. By providing sound and complete semantics for first-order extensions of _FDE_, _K3_, and _LP_, we show how these tools, which we call here the method of _anti-extensions + valuations_, can be naturally applied to a number of non-classical logics.