On neat reducts of algebras of logic

Studia Logica 68 (2):229-262 (2001)
  Copy   BIBTEX

Abstract

SC , CA , QA and QEA stand for the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasipolyadic algebras, and quasipolyadic equality algebras of dimension , respectively. Generalizing a result of Németi on cylindric algebras, we show that for K {SC, CA, QA, QEA} and ordinals , the class Nr K of -dimensional neat reducts of -dimensional K algebras, though closed under taking homomorphic images and products, is not closed under forming subalgebras (i.e. is not a variety) if and only if > 1.From this it easily follows that for 1 , the operation of forming -neat reducts of algebras in K does not commute with forming subalgebras, a notion to be made precise

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,894

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
80 (#284,453)

6 months
8 (#538,969)

Historical graph of downloads
How can I increase my downloads?