Segmentation of Brain Tumour Based on Clustering Technique: Performance Analysis

Journal of Intelligent Systems 28 (2):291-306 (2019)
  Copy   BIBTEX

Abstract

Manual detection and analysis of brain tumours is an exhaustive and time-consuming process. Further, it is subject to intra-observer and inter-observer variabilities. Automated brain tumour segmentation and analysis has thus gained much attention in recent years. However, the existing segmentation techniques do not meet the requirements of real-time use due to limitations posed by poor image quality and image complexity. This article proposes a hybrid approach for image segmentation by combining biorthogonal wavelet transform, skull stripping, fuzzy c-means threshold clustering, Canny edge detection, and morphological operations. Biorthogonal wavelet transform and skull stripping are essential pre-processing steps for analysis of brain images. Initially, biorthogonal wavelet transform is used to remove impulsive noise and skull stripping is employed to eliminate non-cerebral tissue regions from the acquired images, followed by segmentation using fuzzy c-means threshold clustering, Canny edge detection, and morphological processing. The performance of the proposed automated system is tested on standard datasets using performance measures such as Jaccard index, Dice similarity coefficient, execution time, and entropy. The proposed method achieves a Jaccard index and Dice similarity coefficient of 0.886 and 0.935, respectively, which indicate better overlap between the automated segmentation method and manual segmentation method performed by an expert radiologist. The average execution time and average entropy values obtained are 1.001 s and 0.202, respectively. The results obtained are discussed in view of some reported studies in terms of execution time and tumour area. Further work is needed to evaluate the proposed method in routine clinical practice and its effect on radiologists’ performances.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,337

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2017-12-14

Downloads
16 (#1,191,247)

6 months
5 (#1,039,842)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references