A hierarchy of filters smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CF_\kappa\lambda-->$\end{document} [Book Review]

Archive for Mathematical Logic 36 (6):385-397 (1997)
  Copy   BIBTEX

Abstract

This research was partially supported by Grant-in-Aid for Scientific Research (No. 06640178 and No. 06640336), Ministry of Education, Science and Culture of Japan Mathematics Subject Classification: 03E05 --> Abstract. Following Carr's study on diagonal operations and normal filters on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}_{\kappa}\lambda$\end{document} in [2], several weakenings of normality have been investigated. One of them is to consider normal filters without \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-completeness, for example, see DiPrisco-Uzcategui [3]. The other is weakening normality itself while keeping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-completeness such as in Mignone [10] and Shioya [11]. We take the second one so that all filters are assumed to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-complete. In Sect. 1 a hierarchy of filters on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}_{\kappa}\lambda$\end{document} is presented which corresponds to the length of diagonal intersections under which the filters are closed. It turns out that many ranks exist between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $FSF_{\kappa\lambda}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CF_{\kappa\lambda}$\end{document}. We consider seminormal ideals in Sect. 2 and determine the minimal seminormal ideal extending Johnson's result in [6]. Its precise descripti on changes according to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $cf(\lambda )$\end{document} although we can write it in a single form as well. We also prove that a nonnormal seminormal ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I\supset NS_{\kappa\lambda}$\end{document} exists if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document} is regular.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Square principles with tail-end agreement.William Chen & Itay Neeman - 2015 - Archive for Mathematical Logic 54 (3-4):439-452.

Analytics

Added to PP
2013-10-30

Downloads
37 (#609,859)

6 months
3 (#1,470,638)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Partition relations for κ-normal ideals on Pκ(λ).Pierre Matet - 2003 - Annals of Pure and Applied Logic 121 (1):89-111.
A partition property of a mixed type for P~k(Lambda).Pierre Matet - 2003 - Mathematical Logic Quarterly 49 (6):615.
The nonstationary ideal on P_kappa for lambda singular.Pierre Matet & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):911-934.

Add more citations

References found in this work

Add more references