認知距離学習による問題解決器の実行時探索削減の評価と学習プロセスの解析

Transactions of the Japanese Society for Artificial Intelligence 17:1-13 (2002)
  Copy   BIBTEX

Abstract

Our proposed cognitive distance learning problem solver generates sequence of actions from initial state to goal states in problem state space. This problem solver learns cognitive distance of arbitrary combination of two states. Action generation at each state is selection of next state that has minimum cognitive distance to the goal, like Q-learning agent. In this paper, first, we show that our proposed method reduces search cost than conventional search method by analytical simulation in spherical state space. Second, we show that an average search cost is more reduced more the prior learning term is long and our problem solver is familiar to the environment, by a computer simulation in a tile world state space. Third, we showed that proposed problem solver is superior to the reinforcement learning techniques when goal is changed by a computer simulation. Forth, we found that our simulation result consist with psychological experimental results.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,130

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

強化学習エージェントへの階層化意志決定法の導入―追跡問題を例に―.輿石 尚宏 謙吾 片山 - 2004 - Transactions of the Japanese Society for Artificial Intelligence 19:279-291.
Ga により探索空間の動的生成を行う Q 学習.Matsuno Fumitoshi Ito Kazuyuki - 2001 - Transactions of the Japanese Society for Artificial Intelligence 16:510-520.
重点サンプリングを用いた Ga による強化学習.Kimura Hajime Tsuchiya Chikao - 2005 - Transactions of the Japanese Society for Artificial Intelligence 20:1-10.
強化学習を用いた自律移動型ロボットの行動計画法の提案.五十嵐 治一 - 2001 - Transactions of the Japanese Society for Artificial Intelligence 16:501-509.
Qdsega による多足ロボットの歩行運動の獲得.Matsuno Fumitoshi Ito Kazuyuki - 2002 - Transactions of the Japanese Society for Artificial Intelligence 17:363-372.
経験に固執しない Profit Sharing 法.Ueno Atsushi Uemura Wataru - 2006 - Transactions of the Japanese Society for Artificial Intelligence 21:81-93.
強化学習ロボットによるアフォーダンスの利用.公文 誠 李 銘義 - 2001 - Transactions of the Japanese Society for Artificial Intelligence 16 (1):152.
Κ-確実探査法と動的計画法を用いた mdps 環境の効率的探索法.Kawada Seiichi Tateyama Takeshi - 2001 - Transactions of the Japanese Society for Artificial Intelligence 16:11-19.
Profit Sharing 法における強化関数に関する一考察.Tatsumi Shoji Uemura Wataru - 2004 - Transactions of the Japanese Society for Artificial Intelligence 19:197-203.

Analytics

Added to PP
2014-03-24

Downloads
15 (#1,229,188)

6 months
4 (#1,246,434)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references